Additive structure of multiplicative subgroups of fields and Galois theory
نویسندگان
چکیده
One of the fundamental questions in current field theory, related to Grothendieck’s conjecture of birational anabelian geometry, is the investigation of the precise relationship between the Galois theory of fields and the structure of the fields themselves. In this paper we initiate the classification of additive properties of multiplicative subgroups of fields containing all squares, using pro-2-Galois groups of nilpotency class at most 2, and of exponent at most 4. This work extends some powerful methods and techniques from formally real fields to general fields of characteristic not 2.
منابع مشابه
Additive Structure of Multiplicative Subgroups of Fields and Galois Theory Dedicated to Professor Tsit-Yuen Lam in friendship and admiration
One of the fundamental questions in current field theory, related to Grothendieck’s conjecture of birational anabelian geometry, is the investigation of the precise relationship between the Galois theory of fields and the structure of the fields themselves. In this paper we initiate the classification of additive properties of multiplicative subgroups of fields containing all squares, using pro...
متن کاملAdditive Patterns in Multiplicative Subgroups
The study of sum and product problems in finite fields motivates the investigation of additive structures in multiplicative subgroups of such fields. A simple known fact is that any multiplicative subgroup of size at least q in the finite field Fq must contain an additive relation x + y = z. Our main result is that there are infinitely many examples of sum-free multiplicative subgroups of size ...
متن کاملA History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids
This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...
متن کاملCategory Theory and Galois Theory
Galois theory translates questions about fields into questions about groups. The fundamental theorem of Galois theory states that there is a bijection between the intermediate fields of a field extension and the subgroups of the corresponding Galois group. After a basic introduction to category and Galois theory, this project recasts the fundamental theorem of Galois theory using categorical la...
متن کاملArithmetic Teichmuller Theory
By Grothedieck's Anabelian conjectures, Galois representations landing in outer automorphism group of the algebraic fundamental group which are associated to hyperbolic smooth curves defined over number fields encode all arithmetic information of these curves. The goal of this paper is to develope and arithmetic teichmuller theory, by which we mean, introducing arithmetic objects summarizing th...
متن کامل